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IF PRACTICE MAKES PERFECT,
WHAT DOES LESS PRACTICE MAKE?

SUMMARY

uPractice makes perfect"--more time spent exercising new cognitive skills
results in improved performance and reduced cognitive load (e.g., Ackerman,
1988; Anderson, 1987; Schneider & Shiffrin, 1977). In addition, when the
number (or variety) of example problems is small, learning tends to be rapid,
but transfer tends to be weak (e.g., Carlson & Yaure, 1990; Gick & Holyoak,
1987). This paper examined these issues in a controlled setting using an
intelligent tutoring system teaching novel knowledge and skills (i.e., flight
engineering). We manipulated the tutor to yield two contrasting learning
environments: "extended' (12 problems per problem set) and "constrained" (3
problems per problem set). These environments differed only in the number
of practice problems requiring solution in the various problem sets. While
subjects in the shorter version were expected to complete the curriculum faster,
we wanted to examine practice effects on learning outcome (transfer) and skill
acquisition (error and latency analyses). Results showed that while subjects
in the constrained environment completed the curriculum significantly faster than
subjects in the extended version, there were no differences on any of the
outcome tests. Moreover, when the data were examined across problem sets,
latency and error-type differences between the two groups were found.

INTRODUCTION

An enduring expression that has a lot of empirical -support in cognitive
psychology is that upractice makes perfect" (e.g., Ackerman,, 1988; Anderson,
1987; Fisk, in press; Schneider & Shiffrin, 1977; Woltz, 1.988). Increasing the
time allocated to exercising a new cognitive skill typically results in improved
performance and a reduced cognitive load. A related finding is that when the
number (or variety) of example problems is small, learning tends to be rapid,
but transfer tends to be weak (e.g., Carlson & Yaure, 1990; Gick & Holyoak,
1987). Thus, more and varied practice problems lead to more effective skill
acquisition. But how many practice problems are sufficient? Alternatively, how
few practice problems can be provided that will yield comparable learning
outcomes to richer practice environments?

The purpose of this paper is to investigate the effects of practice on learning
outcome. Other questions address the relationship between practice effects and
the learning process. In particular, what are the effects of practice on learning
curves and errors made during skill acquisition? For example, do subjects
tend to compensate for fewer practice problems by adjusting (increasing) their
time spent learning each problem? Is there an effect of practice on the number
or nature of errors made during the learning process?
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We will present results from a large-scale experiment that was designed to
test practice effects from a systematically altered tutoring system teaching flight
engineering skills. We manipulated the tutor to yield two contrasting learning
environments, differing only in the number of problems the learner needed to
solve in each of nine different problem sets. The version with many problems
was called "extended' (12 problems per problem set). The version with fewer
problems to solve was called "constrained" (3 problems per set). A fixed ratio
of 4:1 existed between the two tutor versions.

The simple hypotheses were that (a) subjects assigned to the constraineL;
environment should take less time to complete the tutor because there were
considerably fewer problems for them to solve. However, (b) these same
subjects were not expected to perform as well on the posttests compared with
subjects learning from the extended environment who would have received
considerably more practice solving tutor-related problems. In addition, we
expected that (c) subjects would tend to adjust their learning times per problem
where those in the short version would, over time, take longer to solve each
of their three problems (per problem set) compared to subjects in the longer
version. This adjustment was expected to occur gradually, as learners realized
they had fewer problems and thus invested more time per problem. Finally,
we hypothesized that (d) subjects in the constrained version would manifest
more conceptual (rather than computational) errors during learning given their
sparse practice environment.

METHOD

Subjects

The subjects in this study consisted of 356 males and females participating
in a seven-day study on the acquisition of flight engineering knowledge and
skills from an intelligent tutoring system. The gender distribution in the sample
was approximately 75 percent males and 25 percent females. All subjects
were high school graduates with a mean age of 22 years. Subjects were
obtained from a local temporary employment agency and were paid for their
participation, consisting of forty-five hours of testing and learning. None of the
subjects had any prior experience or training as flight engineers or pilots.

Flight Engineering Tutor

The tutor was originally developed at the University of Pittsburgh (Lesgold,
Bunzo, & Eastman, 1989) and then modified at the Armstrong Laboratory to fit
experimental objectives. The tutor was designed to teach knowledge and skills
associated with a flight engineer's job. Job components include collecting and
analyzing information about a pending flight and deciding whether various factors
(e.g., weather and runway conditions, type of aircraft) indicate a safe flight.
There were two parts to the curriculum: graph reading, and computing values
for inclusion in the TOLD (Take Off and Landing Data) sheet. The focus of
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this paper is on performance within the second, more substantive, part of the
tutor dealing with completing the TOLD worksheet.

The TOLD worksheet part of the curriculum consisted of nine problem sets
and involved applying the graph reading skills taught earlier to fill in the TOLD
worksheet. The on-line worksheet was designed to match the actual forms
used by flight engineers. Information must be assembled and entered into the
proper cells. Some information was given to the learners (e.g., gross weight
of the aircraft, wind direction and velocity, the length, heading, and conditions
of the runway, obstacles in the flight path). Other information had to be
derived from complex graphs and then entered into the correct cells of the
worksheet. For instance, the wind-components chart is used to compute the
headwind, tailwind, or crosswind components, and consists of two superimposed
charts: polar and Cartesian coordinates. On-line tools were available to assist
the learner in making the necessary computations. Some of the tools that
could be used with the wind-components chart included: draw vertical or
horizontal lines, add a radius or vector, erase lines, redisplay graph, and so
forth. A "Help" window allowed the learner to read related information about
the topic under study. Learning was self-paced.

The first (and easiest) set of problems (sets 1, 2, and 3) involved computing
the maximum allowable crosswind given the gross weight of the aircraft and
the runway condition reading (RCR). These problem sets became progressively
more difficult. Prior to the problem-solving phase in each problem set, concepts
or procedures related to the problem set were discussed and illustrated by the
tutor in detail. For example, the tutor explicitly demonstrated how to figure
out the maximum allowable crosswind before presenting any problems (see
Figure 1). First, the relevant chart was displayed on the computer screen.
Then the computer drew a vertical line up from the x-axis (corresponding to
the given gross weight of the aircraft) to intersect the appropriate RCR. A
second line was displayed moving horizontally across from the RCR curve to
the y-axis. The intersection at the y-axis yielded the crosswind value. Text
always accompanied the visual (dynamic) displays, for example, "The MAXIMUM
ALLOWABLE CROSSWIND FOR TAKEOFF chart is shown below. To use the
chart, values from two variables are needed: (1) Gross weight of the aircraft
and (2) Runway condition reading (RCR). RCR is a measure of the tire-to-runway
coefficient of friction..."

The second cluster of problem sets (4, 5, and 6) involved computing the
headwind, crosswind, and tailwind components, respectively. Here, subjects
had to apply rules learned earlier about what constituted various wind types.
For example, the headwind rule was: If the relative wind direction is less than
90 degrees (i.e., 0 to 89), or greater than 270 degrees (i.e., 271 to 360), then
it is a "headwind. Figure 2 illustrates a "headwind" problem. Given the wind
direction, runway heading, wind velocity, and gust (see Figure 2), the "relative
wind direction" was determined from subtracting the wind direction from the
runway heading (smaller value from the larger). Another rule is that gust values
are not added to headwinds, but are added to crosswinds and tailwinds. A
seven-step procedure is shown in Figure 2 computing the headwind and crosswind
components.

3
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uszng the chart above and the tools from the tool menu.

Figure 1
Examples of Problem Set for Determining Maximum
Allowable Crosswind Given Gross Weight and RCR

The final group of problem sets (7, 8, and 9) required the learner to integrate

all earlier problem sets. These problems involved determining the maximum
allowable crosswind values, computing the wind component values, then deciding
whether to proceed or abort the takeoff based on the computed information.

Learning Outcome Measures

We wanted to assess the acquisition of tutor-specific skills as well as general
graph reading and interpreting skills that may have been enhanced as a function
of learning from the tutor. To achieve this end, we created three categories
of posttests: (a) Basic graph knowledge and skills, (b) Complex graph knowledge
and skills, and (c) Tutor-specific knowledge and skills. Within each category,
several tests measured declarative knowledge and procedural skill acquisition
separately. All tests were administered on-line at the conclusion of the tutor.

1. Basic graph knowledge and skills. This test was divided into five parts
and consisted of 50 items altogether. It was a multiple choice format (with
10 alternative responses to choose from). For example: The horizontal partof a graph is called the ?(correct answer is x-axis).
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Headwind Problem
25
U) 35 GIVEN:

I- Wind Dir. = 200 0 20
Z 30 Runway Heading = 235 0
. 20 30 Wind Vel. = 15 kts.

40 Gust = 5 kts.

z

O. 2 THUS:
O ----------- 1. Relative Wind Dir. =35 0

OC, 10 12. Add Vector at 350 .......
z 703. Intersect wind vel. (15 kts)

and wind dir. (35 0)

S5-- \0 1 "4. HW comp. = 12 kts.

5. CW = Vel. + gust = 20 ks.

6. Plot vert. line from 20 kts.0 90 and 350 ..
5 10 15 20 25 17. Crosswind comp. = 10.5

CROSSWIND COMPONENT -KNOTS

Figure 2
Seven-Step Solution for Solving Headwind and Crosswind

Problems from the Wind Components Chart

2. Complex graph knowledge and skills. We created this test to assess
performance on more complex graph-related problems. There were three main
parts: Understanding functions, Story problems, and Complex graph interpretation.
Posttest 2 items were designed to measure graph interpretation skills such as
understanding functional relations and multidimensional graphs. The story
problems were created to be analogous to some of the problems encountered
in the flight engineering tutor, but without any of the vernacular. There were
30 items in this test, multiple choice format with six alternatives to choose
from.

3. Tutor-specific knowledge and skills. We created the final posttest to
assess the depth and breadth of knowledge and skills acquired from the tutor.
All three parts comprising this posttest were tutor-specific. The three parts
measured: Declarative knowledge, Procedural knowledge, and Graph
interpretation. There were 45 items altogether in this posttest, administered in
a multiple choice format with six alternatives to choose from.
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Error Types

Ten different types of errors were tallied during the learning process. These
were classified as either numerical or conceptual errors. Numerical errors
included: (a) incorrect HW or TW value entered, (b) incorrect maximum allowable
crosswind value, (c) incorrect crosswind component computed, (d) omitted data
in TOLD sheet, and (e) failure to abort an unsafe flight (or choosing to abort
a safe flight) due to incorrect wind component value(s). Conceptual errors
were: (a) reversing axes on Wind Components chart, (b) reversing axes on
Maximum Allowable Crosswind chart, (c) reversing vectors on Wind Components
chart, (d) interpreting from incorrect curve on the Maximum Allowable Crosswind
chart, and (e) using an incorrect vector on the Wind Components chart.

Procedure

Subjects were tested in Proups of approximately 20 persons, and there were
twenty groups tested, total. Each p oup spent seven days (about six hours
per day) in this study. Subjects began the study being tested on basic cognitive
process measures (not relevant to this paper), and then were randomly assigned
to one of the learning environments of the tutor. Directly following the completion
of the tutor, subjects were administered the criterion posttest battery.

RESULTS

As expected, subjects in the constrained environment did complete the tutor
faster than subjects in the extended environment (Constrained M = 8.0 hr, SD
= 4.0, N = 181; Extended M = 10.6 hr, SD = 4.5, N = 183). An ANOVA on
these data showed the difference to be significant (F 1,2 = 33.14; p < .001).

But a more interesting question addressed how well the respective groups
performed on the outcome measures. Table 1 shows each of the individual
(and average) posttest scores separated by the two versions of the tutor.
Even-odd reliabilities of the Posttests were high (r = .91, Posttest 1; r = .91,
Posttest 2; r = .90, Posttest 3).

These results were very surprising. In all of the outcome measures, there
were no differences between the two practice environments. In addition, this
finding was not a function of differential incoming knowledge. A pretest was
administered to all subjects before starting the tutor corresponding to the same
item types as in Posttest 1 (i.e., Basic Graphs). There were no differences

'Sonm Indvduas dropped out before comp ng al perts of the study.



on any of the individual tests by treatment group, or in the overall pretest
score (Pretest-Constrained M = 61.8, SD = 20.16, N = 181; Pretest-Extended
M = 62.6, SD = 18.2, N = 183; F 13w = 0.19, NS).2

Table 1. Posttest Scores Separated by Learning Environment

Test Constrained Extended F Signif
(N=177) (N=179)

1 - BASIC GRAPHS
Graph Knowledge 60.40 57.82 0.81 NS
Read Points 53.45 52.45 0.17 NS
Read Relations 69.77 66.15 2.01 NS
Interpret Points 62.49 63.80 0.34 NS
Interpret Relations 52.26 52.29 0.00 NS
(Average) 59.37 58.48 0.32 NS

2 - COMPLEX GRAPHS
Functions 27.82 30.00 0.35 NS
Story Problems 56.47 59.32 1.99 NS
Complex Graphs 69.44 70.22 0.10 NS
(Average) 56.45 58.37 0.84 NS

3 - TUTOR SPECIFIC
Declar. Knowledge 61.02 60.89 0.00 NS
Proced. Knowledge 48.08 48.21 0.00 NS
TOLD sheet 62.71 65.86 2.21 NS
(Average) 59.12 60.83 0.65 NS

The next set of questions concerned differences between groups as a
function of latencies and errors per problem set. Figure 3 shows the data for
the three groups of problems. Problem sets 1, 2, and 3 all involve figuring
out maximum allowable crosswind; sets 4, 5, and 6 involve computing headwind,
tailwind, and crosswind values; and finally, sets 7, 8, and 9 involve integrating
the prior problem sets. The first row of graphs represents solution time by
problem. The second row represents error data (total errors per problem).

21n addition, each poettet was regressed against the mean pretest score and the residuals saved. Comparing outcomes with

these reeidualzed poettest scores again showed no significant differences between conditions.
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Figure 3
Latency and Error Data Across Problem Sets

For the easiest problem sets, there were no strong differences between the
two groups for either latency or error data. But the second group of problem
sets shows some separation between learning curves whereby subjects in the
constrained version began to take longer per problem compared to those in
the extended version. Finally, for the complex problems (sets 7, 8, and 9),
the gap has widened considerably for the time data. Subjects appeared to have
adjusted their learning times upward in the constrained version. The mean
time to learn these problem sets for subjects in the constrained version was
54.24 minutes (SD = 22.13, N = 177), and the mean time for subjects in the
extended version was 35.77 minutes (SD = 15.34, N = 178). This finding
represented a significant difference between the learning environments (F 1,33

-83.61, p < .001).
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In terms of the error data, only "total errors" were plotted. Again, the same
pattern of differences between learning environments emerged. The number
of errors made during the easiest problems (sets 1, 2, and 3) was about the
same for the two learning environments. For the next grouping of problems
(sets 4, 5, and 6), a slight separation between groups began to appear, but
this difference was not significant. By the final group of problems (sets 7, 8,
and 9), subjects in the constrained environment were making more errors than
subjects in the extended environment. This difference was statistically significant
(F 1,353 = 25.68, p < .001).

To determine any differences in the types of errors committed, the error
data were separated into either "numerical" or "conceptual" errors and we
computed a proportion: numerical divided by conceptual errors. To test for
differences between the two practice environments, we computed a one-way
Analysis of Variance (ANOVA) on this proportion by environment. Results
showed that subjects in the constrained environment had a higher proportion
of numerical to conceptual errors (M = 2.69; SD = 1.55; N = 181) compared
to subjects in the extended environment (M = 2.12; SD = 0.88; N = 183).
This difference was significant (F 1.3m = 18.82; p < .001).

DISCUSSION

Practice effects were investigated in relation to overall learning time, learning
outcome, and parameters of skill acquisition (latencies and errors). The first
hypothesis was supported: subjects in the constrained environment did require
significantly less time to complete the tutor compared to subjects in the extended
environment. The second hypothesis, that subjects in the extended environment
would perform better on outcome measures than subjects in the constrained
environment, was not supported and the surprise finding was that there were
no differences on any of the outcome measures between the two groups. This
finding may, in part, be explained by the third finding that subjects in the
constrained environment gradually increased learning times per problem,
presumably to compensate for having so few practice problems to solve (thus,
hypothesis 3 was supported). Finally, it was hypothesized that subjects in the
constrained environment would make more conceptual than numerical errors.
The opposite was found. But this finding can actually account for the other
unexpected finding about the comparability of outcome measures between groups.
Because subjects in the constrained environment were investing more time per
problem, especially within the most difficult problem sets, they were able to
extract the conceptual issues from the problems, but it cost them additional
time per problem. Thus, the errors they made were less conceptual and more
numerical (i.e., a higher proportion of numerical/conceptual errors compared to
the subjects in the extended environment). If they had made more conceptual
errors (in relation to numerical errors), then we would expect to see differences
in outcome performance.
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In conclusion, less practice (1/4 the problems) can actually result in comparable
learning outcomes to more extensive practice environments. The cost is in
terms of more time invested per problem as well as less precise computations
(i.e., numerical errors). But numerical errors can have severe consequences
in the real world. Thus, these data suggest that the tutor should remediate
numerical errors, which it currently does not. Additional research is indicated
to determine the boundary conditions under which we can see these same
results. In other words, just how low can we go? Furthermore, research is
planned to test if differences in retention could be detected between the two
groups after a significant period of time has elapsed (e.g., 9 months to 1 year).
Findings may show that benefits from the extended condition show up in terms
of better retention compared to subjects learning from the constrained environment.
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